$29105 / 2020$
Atomic structure and Quantum mechanics.
Time independent schrodinger wave equation:

$$
\begin{gather*}
{\left[-\frac{h^{2}}{8 \pi^{2} m} \bar{v}^{2}+E_{p}(x, y, z)\right] \psi(x, y, z)=E d \psi(x, y, z)} \\
\hat{H} \psi=E \psi
\end{gather*}
$$

The solution of this equation for stationary state potential energy which is analogous to the stationary state or stading-wave equations for vibrating springs gives the possible values of $\psi$ functions.
These $\psi$ function having a possible solution is called eigenfunction. or wave functions.
The solution of these functions gives the value of corresponding energies called eigenvalues.
Eigenfunction and normalizations:
The volume elements $d x d y d z$ are at the distance $r$ from the nucleus. The probability that an election is in the volume element is proportional to the $\psi^{2} d x d y d z$ if $\psi$ is real and $\psi \psi^{*} d x$ $d y d z$ when $\psi$ is complex.

If the value of $\psi$ is normalized, the probability is equal to $\psi \psi^{*} d x d y d z$.

- The eigenfunction s provide the information about the probability density of an electron.

The eigenfunction s must fusty f some of the basic condition:-
$\rightarrow$ They must be ecrigle valued.
$\rightarrow$ finite in ale regions in space.
$\rightarrow$ They must be continuous.
why 23?
$\rightarrow$ 1) For the first condition to be single valued it must be clear that probability in any region can have only one value.
$\rightarrow$ ii) for the finite part, schrodinger equation will not apply to the electron where $\psi$ is infinite and hence the election does not acts as wave.
$\rightarrow$ iii) discontinuties are not possible in nature. overall the cigen function must be square integral.

$$
\int \Psi^{2}(x, y, z) d x d y d z
$$

over all lime and space.
$\rightarrow$ Eigen function however may be complex that is, it contain $l=\sqrt{-1}$.
$\rightarrow$ complex function can carry both real and imaginary part and is written as
$(a+i b)$ whose square is $\left(a^{2}-b^{2}+2 i a b\right)$ which is also imaginary, and hence can not represent a probability

T To avoid such difficulty complex conjugal de $4^{*}$ is added and probability is gives by $\psi \psi^{*}$ where $\psi^{*}$ is $(a-i b)$ and hence the product is $a^{2}+b^{2}$ which is real.

Normalization:
If we multiply $\psi$ by any number ' $a$ ', we get

$$
\hat{H}(a \psi)=E(a \psi)
$$

ana probability of elector in the space $d x d y d z$ is
( $\psi \psi^{*} d x d y d z$ )
On integration of this over all space

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \psi \psi^{*} d x d y d z=1 \\
& \text { can be written as } \int \psi \psi^{*} d \tau=1 \\
& d \tau=d x d y d z \Rightarrow \text { normalized condition }
\end{aligned}
$$

Hence the equation becomes:-

$$
\int \phi \phi^{*} d \tau=b
$$

where $\phi$ is the eigenfunction obtained oft the solution of schrodinger wave equation To make the equation an integral unity:

$$
\int \frac{\phi \phi^{\psi}}{\sqrt{b} \sqrt{b}} d \tau=1
$$

The new function becomes $\psi=\phi \sqrt{b}$ The equation

$$
\int \psi \psi^{*} d \tau=1 \text { is }
$$

known as normalized condition.

Postulates in quantum mechancis:
Postulate 1: The physical state of particle is described fully as possible by an appropuial wave function $\psi(x, y, z, t)$
Postulate I: The possible wave functions $\psi(x, y, z, t)$ are obtained by solving the schrodinger wave -quation.

$$
\left[\frac{-h^{2}}{8 \pi^{2} m} \bar{v}^{2}+E_{p}(x, y, z)\right] \psi=E \psi \mathcal{P}
$$

by keeping boundary conditions into a count.
Postulate III: Every dynamical variable, corresponding to the physically observable property can be represented by linear
operation ie. $\hat{o}(a \psi+b \phi)=a \hat{o} \psi+b$ operator ice. $\hat{o}(a \psi+b \phi)=a \hat{o} \psi+b \hat{o} \phi$ Two operators can commute :- $\hat{o}_{1} \hat{O}_{2} \psi=\hat{o}_{2} \hat{O}_{1} \varphi$

Quester:-
If operator $x$ is one dimensional position operator and $\left(\frac{h}{2 \pi i}\right) \frac{\partial}{\partial x}$ is one dimensional momentum operator. Prove that they commute?
$\rightarrow$ class at $6: 00$ p:m today
evening. $\longrightarrow$
Keep studying
Stay Home and stay safe: kindly go through both the sheets I shared before the class

